
Introduction to Programming
(in C++)

Subprograms:
procedures and functions

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC

Subprograms

• Programming languages, in particular C++, not
only provide a set of basic operations and
statements, but also a means to define our own
operations and statements.

• We call the operations and statements that we
define functions and procedures, respectively.

• Procedures and functions (subprograms) may
have parameters. These represent the objects
from our program that are used in the
subprogram.

Introduction to Programming © Dept. CS, UPC 2

Subprograms

• Functions are defined as follows:

Introduction to Programming © Dept. CS, UPC 3

int times(int x, int y) {

// Code

}

Parameters
Type of
result

Name of the
function

It must include a
return statement

Subprograms
int times(int x, int y) {

int p = 0;

while (y > 0) {

if (y%2 == 0) {

y = y/2;

x = x2;

}

else {

p = p + x;

y = y – 1;

}

}

return p;

}

Introduction to Programming © Dept. CS, UPC 4

Subprograms

• Procedures are defined similarly, but without
delivering any result:

Introduction to Programming © Dept. CS, UPC 5

void factors(int x) {

// Code

}

No result

Subprograms

void factors(int x) {

int f = 2;

while (x != 1) {

if (x%f == 0) {

cout << f << endl;

x = x/f;

}

else f = f + 1;

}

}

Introduction to Programming © Dept. CS, UPC 6

Subprograms

• Subprogram definitions may appear before or
after the main program.

Introduction to Programming © Dept. CS, UPC 7

#include <iostream>
using namespace std;

int f() {
// Code for f

}

int main() {
// Code for the main program

}

void p(int a) {
// Code for p

}

Subprograms

• A function can only be used if previously declared. A
function can be declared and used before its code is
defined.

Introduction to Programming © Dept. CS, UPC 8

double volume_sphere(double radius);

void some_geometry() {
...
double V = volume_sphere(1.0);
...

}

double volume_sphere(double radius) {
return 4Piradiusradiusradius/3;

}

Subprograms

• Once a subprogram has been declared, it can be
used.

– Functions are used as operations within expressions.

– Procedures are used as statements.

Introduction to Programming © Dept. CS, UPC 9

i = times(3, i + 2) + 1; //
function

...

factors(i); // procedure

...

Subprograms

• Appropriate use of subprograms:

– Increases readability: programs are better
structured and easier to understand.

– Enables the use of abstraction in the
program design.

– Facilitates code reuse.

Introduction to Programming © Dept. CS, UPC 10

Subprograms

• Evaluating the expression

times(3, i + 2) + 1

means executing the code of times over the
arguments 3 and i+2 and then adding 1 to
the result returned by the function.

Introduction to Programming © Dept. CS, UPC 11

Subprograms

• Evaluating the statement

factors(i);

means executing the code of factors over
the argument i.

Introduction to Programming © Dept. CS, UPC 12

Subprograms: parameter passing

• When a subprogram is called, the arguments
are passed to the subprogram, so that its code
can be executed:

times(3, i + 2) + ...

int times(int x, int y) { … }

• Each argument must have the same type as its
corresponding parameter.

Introduction to Programming © Dept. CS, UPC 13

Subprograms: parameter passing

• In general, any expression can be the
argument of a subprogram:

Introduction to Programming © Dept. CS, UPC 14

double maximum(double a, double b);

...

z = maximum(x, y);
...

r = maximum(3, gcd(s - 4, i) + alpha);

...

m = maximum(x, maximum(y + 3, 2Piradius));

Subprograms: parameter passing
• An object (a variable) is associated with a value and a

memory location. In C++, there are two methods for
parameter passing:

– Passing the value (call-by-value). This is denoted by just
declaring the type and the name of the parameter.

– Passing the memory location (call-by-reference). This is
denoted by adding the symbol & next to the parameter
type.

void p(int x, int& y) { ... }

Introduction to Programming © Dept. CS, UPC 15

Call-by-value Call-by-reference

Subprograms: parameter passing
• Call-by-value makes a copy of the argument at the

beginning of the subprogram. It is equivalent to having,
a statement that assigns the value of each argument to
the corresponding parameter:

Introduction to Programming © Dept. CS, UPC 16

times(3, i + 2)

is equivalent to:

int times(int x, int y) {

x = 3; y = i + 2;

int p = 0;

...

}

Subprograms: parameter passing

• The effect of call-by-reference is that the parameter
becomes the same object (variable) as the argument,
i.e., the parameter becomes an alias of the argument.

• Example: procedure to swap the value of two variables

Introduction to Programming © Dept. CS, UPC 17

void exchange(int& x, int& y) {

int z = x;

x = y;

y = z;

}

Subprograms: parameter passing

Introduction to Programming © Dept. CS, UPC 18

exchange(a, b)

Is equivalent to having:

void exchange(int& x, int& y) {

int z = a;

a = b;

b = z;

}

Subprograms: parameter passing

int x, divisor;

bool p;

...

cin >> x;

p = is_prime(x + 3, divisor);

...

Introduction to Programming © Dept. CS, UPC 19

bool is_prime(int n, int& d) {

d = 2;

bool prime = (n != 1);

while (prime and d < n) {

if (n%d == 0) prime = false;

else d = d + 1;

}

return prime;

}

n: d:

prime:x:

divisor:

p:

6

9

2

true

3

false

false

// Pre: n >= 1
// Post: returns whether n is prime.
// If it is not prime, d is a divisor.

Warning: we do not recommend the use of non-void
functions with reference parameters in this course.

false

Subprograms: parameter passing

• Use call-by-value to pass parameters that
must not be modified by the subprogram.

• Use call-by-reference when the changes made
by the subprogram must affect the variable to
which the parameter is bound.

• In some cases, call-by-reference is used to
avoid copies of large objects, even though the
parameter is not modified.

Introduction to Programming © Dept. CS, UPC 20

Subprograms: parameter passing

• To define a subprogram that, given two integers x
and y, returns their quotient and remainder, we can
write:

Introduction to Programming © Dept. CS, UPC 21

void div(int x, int y, int& q, int& r) {

q = x/y;

r = x%y;

}

Subprograms: parameter passing

• For instance, if the parameters would be passed by
reference in the function times, after the execution
of the statements:

int a = 4;
int b = 2;
int c = times(a, b);

the value of a would be 0 and the value of b would
be 8 (and the value of c would be 8).

Introduction to Programming © Dept. CS, UPC 22

Subprograms: parameter passing

• For instance, after the definition:

void exchange(int x, int y) {
int z = x;
x = y;
y = z;

}

the statement exchange(a,b) would not have any
effect on a and b.

Introduction to Programming © Dept. CS, UPC 23

Subprograms: parameter passing

• A call-by-value parameter can receive any
expression as an argument.

• A call-by-reference parameter can only be bound
to variables.

Introduction to Programming © Dept. CS, UPC 24

void exchange (int& a, int& b);

...

exchange(a, b + 4);

Incorrect parameter passing.

The Least Common Multiple (LCM)

• Design a function that calculates the LCM of
two numbers. Assume that we can use a
function gcd(a,b) that calculates the
greatest common divisor.

Introduction to Programming © Dept. CS, UPC 25

// Pre: a>0, b>0

// Returns the LCM of a and b

int lcm(int a, int b) {

return (a/gcd(a,b))b;

}

