Introduction to Lab Sessions

PRO1

Josep Carmona, Lluis Padro

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Introduction

Introduction

* In this course we will learn to write programs that run in command-
line mode (i.e. with no GUI)

* Example:
int main() { $
<< : .
cout - What is your name?
cin >> name; Hello Maria, nice to meet you.
cout << << name;)
cout << ;

cout << endl;

Introduction

* Our programs will normally read some input (e.g. the user name in
previous slide) and produce some output (e.g. the greeting)

* Example:

int main() {
cout <<

cin >> n;

cout << n << << n*1 << endl;
cout << n << << n*2 << endl;
cout << n << << n*3 << endl;
cout << n << << n*4 << endl;
cout << n << << n*5 << endl;

Building programs

* To be run in a computer, programs need to be in executable (a.k.a.
binary) form.

* The program will read the input, process it, and produce the
appropriate output

Input Output
Executable (e.g. “Hello Maria
“« °e_n) ‘>)
(e.g. “Maria”) program nice to meet you”)
/ _//—

Programacié 1 -- © Dept. CS, UPC

Building programs

* We can not write programs directly in binary (too costly and error
prone)

* Thus, we have Programming Languages (e.g. C++) that are closer to
humans. Programs written in such languages must be converted to
binary using a compiler.

C++ Program

int main() {
cout << "What is your name? "; Executable program
sFrigg name; 111010101010101010101010
cin name;
Cout << "Hello " << name; (——>| Compiler > o11110010101010101010101
cout << ", nice to meet you."; 11111111600101011010160010
cout << endl;

- I

Programacié 1 -- © Dept. CS, UPC

Putting it all toghether

Statement, program
requirements
(e.g.
“write a program that
asks the user’s name and
greets her”)

Text
editor

Input

(e.g.
“Maria”)

C++ Program

int main() {
cout << "What is your name? ";
string name;
cin >> name;
cout << "Hello " << name;
cout << ", nice to meet you.";
cout << endl;

/

/
v

Compiler

v

Executable program
111010160160101010101010101601

—> 011010101010101010101011110 >

010101010101610101111111110
010101101010010

Programacié 1 -- © Dept. CS, UPC

Output

(e.g.
“Hello Maria, nice to

Checking that the program works

Input: Maria 5

Executable program

Output
Hello Maria, nice to
meet you

T

Input: Joan

i

Executable program

Output
Hello Joan, nice to
meet you

T

Input: Samuel [

i

Executable program

Output
Hello Joan, nice to

meet you

T

Programacié 1 -- © Dept. CS, UPC

diff
<€ >
diff
< >
diff XK
<€ >

EXPECTED Output
Hello Maria, nice to
meet you

T

EXPECTED Output
Hello Joan, nice to
meet you

T

EXPECTED Output
Hello Samuel, nice to
meet you

T

LINnuX

Programacié 1 -- © Dept. CS, UPC

Linux desktop and command line

* In Linux, you have a desktop similar to that of any other O.S.

* Most tasks (copying or renaming a file, moving it to a
different folder, create a new folder, etc) can be performed
using the graphical desktop interface

* However, we are going to write command-line interface
programs, which need to be run in a command line
interpreter (also known as console, terminal, or shell)

* From the console, you can run commands to execute any
program, or to handle files (copy, rename, move, etc).

Programacio 1 -- © Dept. CS, UPC

Basic shell commands

A terminal has, in a given moment, one and only one current
working directory (i.e. the folder we have currently open).

Shell commands are always referred to the current working
directory

cd dirname Open folder with given name

cd .. Close current folder and go back to parent.
pwd Print current working directory

ls List contents of current directory

mkdir dirname Create new directory with given name

rmdir dirname Remove directory with given name

Basic shell commands (cont.)

cp frilel rfile’ Copy filel to file2
mv Ffrlel frle? Rename filel to file2
rm frle Remove file

more fi7le Show content of file

Extensive and detailed step-by-step tutorial on shell commands for
newbies:

http://linuxcommand.org/

Programacio 1 -- © Dept. CS, UPC

http://linuxcommand.org/

Writing programs

Set up programming
environment

* Programs must be written on a plain text editor.
* Linux offers several of them (emacs, kwrite, TextEditor, ...)

* We recommend Visual Studio Code, already available in FIB
computers

Set up programming environment

Extension: C/C++ - pp - Visual Studio Code

o We need to CO nfigu re Fil Edit Go unTerminal Hlp -
VScode to be able to
C/C++ v1.17.5

manage C++ code " osiop Pl
B C/C++

C/C++ IntelliSense, debuggi..__4...
Microsoft Install C/C++ IntelliSense, debugging, and code bro

1. Select “extensions” | |ES—————— et

Install! /\

2. Search for “c++”

C/C++ Extension... < 19.8M % 45

3. SElect extension S — C/C++ for Visual Studio Code

Better C++ Syntax > 10.6M % 5

4. Install

C/C++ Themes

Repository | Issues | Documentation | Code Samples

I Live Share enabled

& Microsoft The C/C++ extension adds language support for C/C++ to Visual Studio Cc
e) and features.
C/C++ Runner P> 2.8 5
4 Pre-requisites
franneckJ4 Install
C++is a compiled language meaning your program's source code must b

H o 31N 45 - s T, . - -
C/C++ CompileRun & 31M % 45 (compiled) before it can be run on your computer. VS Code is first and for

& danielpinto8zz6) install and relies on command-line tools to do much of the development workflo

Set up programming environment

1. Select the
explorer

. Select (or
create) a
folder where
you want to

store your
programs.

@ EXPLORER

v NO FOLDER OPENED

You have not yet opened a folder.

1

Open Folder S

Opening a folder will close all currently
open editors. To keep them open,
instead.

)] Welcome X

Visual Studio Code
Editing evolved

Start

Recent

Welcome - Visual Studio Code
File Edit Selection View Go Run Terminal Help

Recommended

GitHub Copilot

Supercharge yot
$10/month with

Walkthroughs

Get Started witl

Discover the best
yours.

Get Started witl

® Learn the Fund:

== Boost your Proc

Starting a new program

Welcome - PRO1 - Visual Studio Code

1- For eaCh new File Edit Selection View Go Run Terminal Help
p rog ra m) ’ — 1 New File...

Create a file CreateNewFilf('w...‘)E.un;ﬁ |
Visual Studio Code

2. The f||e Name Editing evolved
mUSt have . sFart Recommended

. 1 ﬂk e E GitHub Copilot
extension .cc L S

Walkthroughs
Recent PP Get started with v

Discover the best cu
yours.

Get Started with C

® Learn the Fundam:

Starting a new program

hello.cc - PRO1 - Visual Studio Code

Write your § File Edit Selection View Go Run Terminal Help
program and save [LSEE
the file.

¢+ hello.cc X

¢+ hello.cc

1
Open auxiliary | ° Cout << "hello world" << endL.
panel kg ;]
Errors will appear
. 2 alliliey ~
in tab PROBLEMS
k
Tab TErRmINAL Will st it

-IW-I--I-- 1 padro padro 92 5 de set. 16:59 hello.cc
: $ g++ -0 hello hello.cc
$./hello

Y |

allow compilation '
and execution rello vorld

> OUTLINE

S

TIMELINE Programaci
X ®OAO0

How to write a program

e Launch VisualStudio code
* Create a new document
e write a sample program:

using namespace std;

int main() {
cout << "Hello everybody!" << endl;

}

Save the program with a name that ends in . cc (e.g.
hello.cc) and notice how VScode syntax-colored the program.

Programacio 1 -- © Dept. CS, UPC

How to compile a program

* Navigate in the terminal to the directory where you saved
thefile hello.cc

* Compile the program:
pl++ -0 hello.x hello.cc
* If there are errors, fix them and compile again.

* Execute the program
./hello.Xx

Programacio 1 -- © Dept. CS, UPC

Example: squares.cc

using namespace std;

int main() {
int a,b,c;
cin >> a >> b >> ¢,
cout << a*a << " " <K< p*¥p << " " <K< ¢c*c << endl;

}

$
$

36 9 144
$

Example: nif.cc

using namespace std;

int main() {
int dni;
cin >> dni;
const string data("TRWAGMYFPDXBNJZSQVHLCKE")
cout << "NIF letter: " << data[dni%23] << endl;

NIF letter: G
$

Handling compilation errors

* |If there are errors, the executable is not created.
We must fix the errors and compile again.

using namespace std;

int main() {

int a,b;
cin >> a >> b >> ¢
cout << a*a << " " K< phb*¥p << " " K< ¢c*C << endl;

}

$

squares.cc:6:30: error: ‘c’ was not declared

squares.cc:/:3: error:. expected
;° before ‘cout’

Organize your work

Organize your exercises

* During the course there will be two lab exames.

* There are dozens of exercises in the course.

* Exercises are organized in lists, by course chapters.

* It is crucial to have exercises organized to avoid getting lost.

Programacio 1 -- © Dept. CS, UPC

Organize your
exercises

* We recommend having a
folder for each problem.

* It is also useful to group
problem folders depending
on the list they belong to.

* In each problem folder, you
can have the C++ program,
the executable, and its input
and output files.

e 2

Places
(:t Home
B Network

™ Root
[0 Trash

Recently Saved
Today
Yesterday

This Month
Last Month

Search For
= Documents
EJ Images

J¥ Audio Files
H videos

Devices

160.0 GiB Hard Drive
85.0 GiB Hard Drive

P assig on pax

CACHE

P8 /home2/users/professol

[—— >

©ToeEpPLCo;uUrC

PRO1 — Dolphin

v~ Q

88 Q Find Preview Split = Control
> Home > dades > linux > PRO1|
Name v Date
v- B P1-introduction 7/25/17 10:14 AM
v- B P99182 7/25/17 10:15 AM
C' average.cc 7/25/17 10:15 AM
[J average.x 7/25/17 10:15 AM
[J) sample-1.cor 7/25/17 10:15 AM
[J sample-1.imp 7/25/17 10:15 AM
[J) sample-2.cor 7/25/17 10:15 AM
[J) sample-2.inp 7/25/17 10:15 AM
> - P9 X54725 7/25/17 10:16 AM
> - 1 X64734 7/25/17 10:15 AM
v B P2-first-loops 7/25/17 10:18 AM
> - B3 P37500 7/25/17 10:18 AM
v- P P59875 7/25/17 10:18 AM
[sample-1.cor 7/25/17 10:18 AM
[J sample-1.imp 7/25/17 10:18 AM
[J) sample-2.cor 7/25/17 10:18 AM
[J) sample-2.inp 7/25/17 10:18 AM
C' top.cc 7/25/17 10:18 AM
[J top.x 7/25/17 10:18 AM
> - B3 P3-more-loops 7/25/17 10:16 AM

8 Folders, 12 Files (0 B)

1.1 GiB free

The Jutge

Automatic scoring of programs

https://iutge.org is the environment where we will grade the lab
exercises and we will take the course exams.

* You have been invited to this course. Find it in the list, and click
“enroll this course”.

* You can submit your programs to the jutge and find out whether
they work.

* You can also download the input files and expected outputs for
each problem, to check them in your PC.

* |t is important to be able to work locally: In the exams,
penalizations are applied after three requests to the jutge.

Programacio 1 -- © Dept. CS, UPC

https://jutge.org/

Important things to know

* At https://prol.cs.upc.edu you Will find important information
about this course.

* |n particular, check the tab
“Entregues problemes”, which is updated frequently, and
contains:
* The range of dates when each list must be solved.
* Which problems of each list you have solved so far.

Programacio 1 -- © Dept. CS, UPC

https://pro1.cs.upc.edu/

Example

* Now your professor will do an example problem on the
jutge. Try to follow it in your computer.

Checking program results

Input/output in C++

* Read data
int a,b,c;
cin >> a >> b >> c;
e Write data
int a;
cout << "Value: " << g << endl;

* The output must be exactly as the expected for the
problem to be accepted by the jutge.

Problems with manual input/output

* Manual input
* We can not change the input once we press return.

* Time-consuming and error-prone when the input is long.
* We must press ct1-D to end the input.

* Manual check of the output

* If the output is long, it is difficult to spot small differences
with respect to expected output.

Programacié 1 -- © Dept. CS, UPC

“Automatic” input/output

*Run program redirecting input and output

./squares.x <sample-1.1np >sample-1.out
Symbol < will read input from given file instead of keyboard.
Symbol > will write output to given file instead of display.

* Compare obtained output with expected output
kompare sample-1.out sample-1.cor

Programacio 1 -- © Dept. CS, UPC

